symmetric curvature tensor
نویسندگان
چکیده
recently, we have used the symmetric bracket of vector fields, and developed the notion of the symmetric derivation. using this machinery, we have defined the concept of symmetric curvature. this concept is natural and is related to the notions divergence and laplacian of vector fields. this concept is also related to the derivations on the algebra of symmetric forms which has been discussed by the authors. we introduce a new class of geometric vector fields and prove some basic facts about them. we call these vector fields affinewise. by contraction of the symmetric curvature, we define two new curvatures which have direct relations to the notions of divergence, laplacian, and the ricci tensor.
منابع مشابه
Symmetric curvature tensor
Recently, we have used the symmetric bracket of vector fields, and developed the notion of the symmetric derivation. Using this machinery, we have defined the concept of symmetric curvature. This concept is natural and is related to the notions divergence and Laplacian of vector fields. This concept is also related to the derivations on the algebra of symmetric forms which has been discu...
متن کاملSpacetimes admitting quasi-conformal curvature tensor
The object of the present paper is to study spacetimes admitting quasi-conformal curvature tensor. At first we prove that a quasi-conformally flat spacetime is Einstein and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying Einstein's field equation with cosmological constant is covariant constant. Next, we prove that if the perfect flui...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملspacetimes admitting quasi-conformal curvature tensor
the object of the present paper is to study spacetimes admitting quasi-conformal curvature tensor. at first we prove that a quasi-conformally flat spacetime is einstein and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying einstein's field equation with cosmological constant is covariant constant. next, we prove that if the perfect...
متن کاملSymmetric Tensors and Symmetric Tensor Rank
A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank-1 order-k tensor is the outer product of k non-zero vectors. Any symmetric tensor can be decomposed into a linear combination of rank-1 tensors, each of them being symmet...
متن کاملThe Riemann-Lovelock Curvature Tensor
In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth order Riemann-Lovelock tensor is determined by its traces in dimensions 2k ≤ D < 4k. In...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
bulletin of the iranian mathematical societyناشر: iranian mathematical society (ims)
ISSN 1017-060X
دوره 37
شماره No. 3 2011
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023